Adaptive Multi-Modalities Fusion in Sequential Recommendation

Hengchang Hu* †
hengchang.hu@u.nus.edu
National University of Singapore
Singapore

Yong Liu liu.yong6@huawei.com Huawei Noah's Ark Lab Singapore Wei Guo guowei67@huawei.com Huawei Noah's Ark Lab Singapore

Min-Yen Kan kanmy@comp.nus.edu.sg National University of Singapore Singapore

code: https://github.com/HoldenHu/MMSR.

CIKM 2023

Introduction

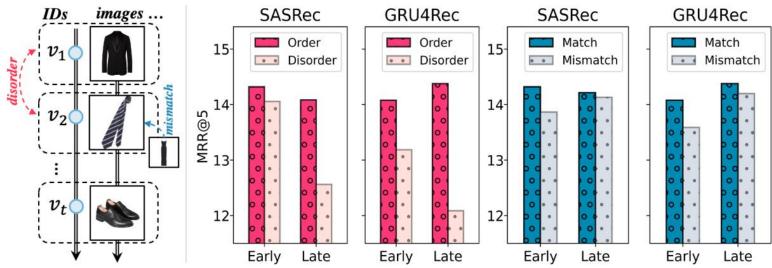


Figure 1: Case study on the Amazon-Fashion dataset. Here, Order/Match refers to the original modality sequence, while disordered refers to a shuffled item order sequence, and mismatched refers to a condition with displaced modalities.

Early fusion is less sensitive to the interactions between intra-channel features.

Late fusion is less sensitive to the interactions among different channels of features.

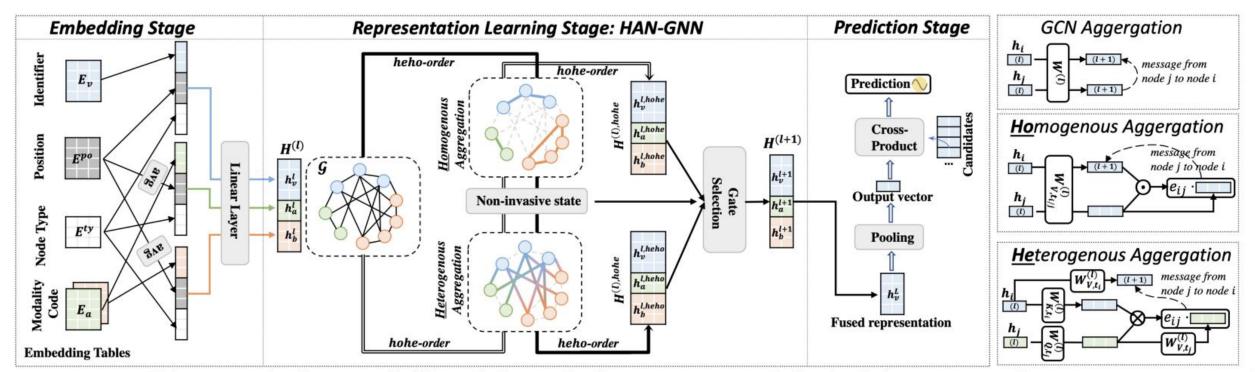


Figure 2: Overall framework of MMSR (left), and the applied aggregation modules (right). Distinct node types are represented by different colors.

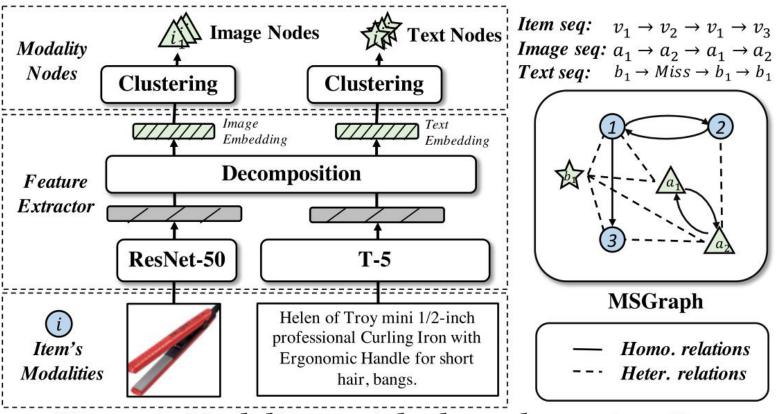


Figure 3: Modality-enriched graph construction.

$$\mathbf{E} = \begin{bmatrix} \mathbf{e}_{v_1}, & \mathbf{e}_{v_2}, & \cdots, & \mathbf{e}_{v_m} \\ \mathbf{e}_{a_1}, & \mathbf{e}_{a_2}, & \cdots, & \mathbf{e}_{a_m} \\ \mathbf{e}_{b_1}, & \mathbf{e}_{b_2}, & \cdots, & \mathbf{e}_{b_m} \end{bmatrix}$$
(1)

$$\mathbf{P} = f(\mathbf{E}) \tag{2}$$

Early fusion:

$$\mathbf{E}_{i,:} = \sigma(\mathbf{W}(cat[\mathbf{E}_{i,1}; \mathbf{E}_{i,2}; \mathbf{E}_{i,3}])) \tag{3}$$

$$P = \mathcal{M}([E_{1,:}, E_{2,:}, ..., E_{m,:}])$$
(4)

Late fusion:

$$\mathbf{E}_{:,j} = \mathcal{M}([\mathbf{E}_{1,j}, \mathbf{E}_{2,j}, ..., \mathbf{E}_{m,j}])$$
 (5)

$$\mathbf{P} = \sigma(\mathbf{W}(cat[\mathbf{E}_{:,1}; \mathbf{E}_{:,2}; \mathbf{E}_{:,3}]))$$
(6)

$$\hat{y} = \langle \mathbf{P}, \mathbf{e}_v^{\top} \rangle \tag{7}$$

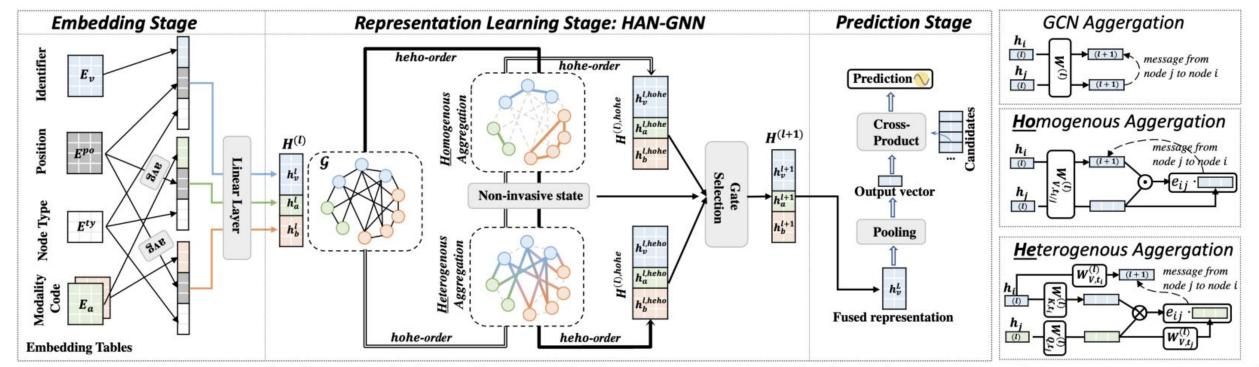


Figure 2: Overall framework of MMSR (left), and the applied aggregation modules (right). Distinct node types are represented by different colors.

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in N_i} d(i,j) W^{(l)} h_j^{(l)} \right)$$
(8)
$$e_{ij}^{(l)} = a^T \left[W^{(l)} h_i^{(l)}; W^{(l)} h_j^{(l)} \right]$$
(10)

$$h_{i}^{(l+1)} = \sum_{j \in N_{i}} \alpha_{ij}^{(l)} h_{j}^{(l)}$$
(9)
$$\alpha_{ij}^{(l)} = sft(e_{ij}^{(l)}|N_{i}) = \frac{\exp(\text{LeakyReLU}(e_{ij}^{(l)}))}{\sum_{k \in N_{i}} \exp(\text{LeakyReLU}(e_{ik}^{(l)}))}$$
(11)

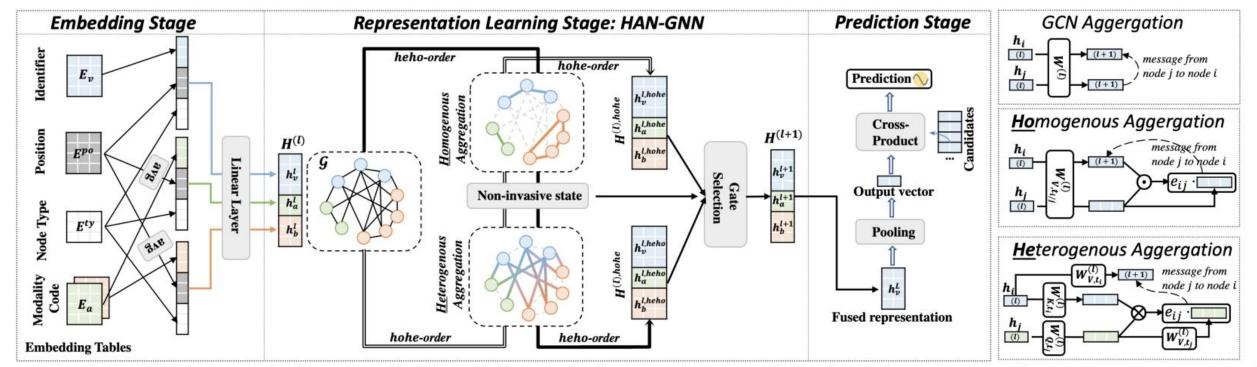


Figure 2: Overall framework of MMSR (left), and the applied aggregation modules (right). Distinct node types are represented by different colors.

$$e_{ij}^{(l),ho} = a_r(W_{V,t_i}^{(l)}h_i^{(l)} \odot W_{V,t_j}^{(l)}h_j^{(l)}) \quad \text{(12)} \qquad \qquad h_i^{(l+1),*} = \sum_{j \in N_i} sft(e_{ij}^{(l),*}|N_i)(W_{V,t_j}^{(l)}h_j^{(l)}) \quad \text{(14)}$$

$$e_{ij}^{(l),he} = (W_{Q,t_i}^{(l)}h_j^{(l)})(W_{K,t_i}^{(l)}h_i^{(l)})^{\top}$$
 (13)
$$h_i^{(l+1)} = Linear([h_i^{(l+1),ho}; h_i^{(l+1),he}])$$
 (15)

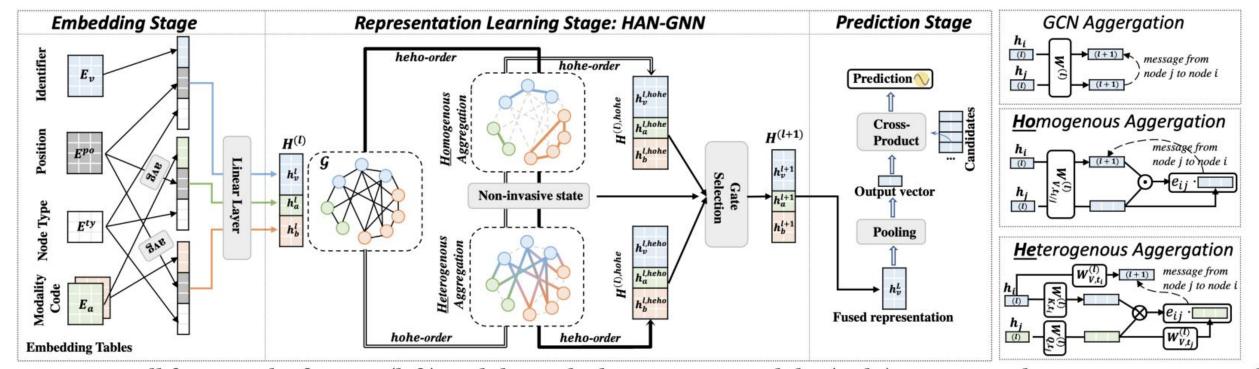


Figure 2: Overall framework of MMSR (left), and the applied aggregation modules (right). Distinct node types are represented by different colors.

$$\beta = MLP([h_i^{(l+1),hohe}; h_i^{(l+1),heho}]) \quad (16) \qquad h_i^{(l+1)} = \beta_0 \times h_i^{(l+1),hohe} + \beta_1 \times h_i^{(l+1),heho} \quad (17)$$

	Beauty	Clothing	Sports	Toys	Kitchen	Phone
User #	22,363	39,387	35,598	19,412	27,879	66,519
Item #	12,101	23,033	18,357	11,924	10,429	28,237
Inter. #	198,502	278,677	296,337	167,597	194,439	551,682
Avg Len. #	8.88	7.12	8.46	8.79	7.19	8.35
Sparsity	99.93%	99.97%	99.95%	99.93%	99.93%	99.97%

Table 1: Dataset Statistics after preprocessing.

	Metric	GRU4Rec	SASRec	SR-GNN	MMGCN	MGAT	BM3	GRU4Rec ^F	$SASRec^F$	NOVA	DIF-SR	Trans2D	MMSR
Beauty	HR@5 MRR@5 HR@20 MRR@20	5.6420 3.1110 12.7217 3.7714	6.1900 3.2165 14.0681 3.9668	4.1483 2.2123 10.2351 2.7911	2.6534 1.2534 7.0443 1.5263	4.0870 2.0297 9.1126 2.6714	4.8713 2.3349 10.2640 3.1945	3.7682 2.0793 9.4868 2.6006	6.4021 3.7990 14.0269 4.5073	4.2219 2.1785 10.7978 2.8160	$\frac{6.5789}{4.0735}$ $\frac{14.0137}{4.7983}$	6.0191 3.4387 13.2214 3.9460	7.1563* 4.4429* 14.1470* 5.0433*
Clothing	HR@5 MRR@5 HR@20 MRR@20	1.3340 0.6765 3.8111 0.9418	1.5885 0.7820 3.9574 1.0339	0.8547 0.4555 2.7528 0.6251	0.5231 0.2128 1.7847 0.4359	0.9613 0.5470 2.7363 0.7548	1.2851 0.5460 3.5072 0.9045	0.9501 0.5212 2.8610 0.6955	$ \begin{array}{r} 1.8430 \\ \hline 0.9470 \\ \hline 4.2048 \\ \hline 1.2814 \end{array} $	1.2937 0.6503 3.4866 0.8783	1.5524 0.7961 4.0571 1.0530	1.3929 0.6682 4.0683 1.0391	1.8684* 1.1365* 4.4136* 1.3344*
Sport	HR@5 MRR@5 HR@20 MRR@20	2.4388 1.2696 6.6430 1.6947	2.9549 1.5858 7.2208 2.0357	2.0742 1.0790 5.4376 1.4349	1.2020 0.5688 3.6492 0.8645	2.0418 0.8762 5.2197 1.3002	2.3096 0.9963 5.3184 1.5245	1.8929 0.9786 5.4834 1.3274	$ \begin{array}{r} 3.1063 \\ \hline 1.6997 \\ \hline 7.3683 \\ \hline 2.1427 \end{array} $	2.1539 1.1271 5.8062 1.5648	2.5145 1.3469 7.0774 1.9214	2.7168 1.4235 6.9453 1.7058	3.2657* 1.9846* 7.7466* 2.2826*
Toys	HR@5 MRR@5 HR@20 MRR@20	3.8663 2.0022 10.0727 2.7267	5.0902 2.7536 11.8668 3.4228	2.7329 1.4878 6.7452 1.8655	1.7592 0.7869 4.5497 1.1256	2.3746 1.1369 5.9223 1.5314	3.9084 2.0352 8.7071 2.5623	2.1974 1.1576 6.0638 1.5230	5.2328 3.0801 11.7485 3.6812	3.7899 1.9641 9.0609 2.4502	$\frac{5.2363}{3.1944}$ $\frac{12.0284}{3.8777}$	4.1908 2.2370 10.5082 2.9298	6.1159* 3.8987* 12.1192* 4.3551*
Kitchen	HR@5 MRR@5 HR@20 MRR@20	1.1759 0.5824 3.5640 0.8277	1.8012 0.9729 4.2021 1.2043	1.1024 0.5877 3.3255 0.8507	0.6671 0.3154 2.2404 0.5210	1.2225 0.4882 3.5206 0.6898	1.4399 0.7012 3.4157 0.8832	1.1323 0.5586 3.5449 0.7817	$ \begin{array}{r} 1.9077 \\ \hline 1.1268 \\ \hline 4.3187 \\ \hline 1.3862 \end{array} $	1.2558 0.6279 3.5332 0.8349	1.5828 0.8499 4.2766 1.1041	1.3463 0.7413 3.8158 0.8682	2.2145* 1.4238* 4.4535* 1.6086*
Phone	HR@5 MRR@5 HR@20 MRR@20	5.6626 2.8765 13.4539 3.7002	6.4435 3.4998 14.1525 4.3182	5.3128 2.7221 12.1363 3.4807	3.2823 1.4397 8.3255 2.0647	4.4046 1.8735 10.9956 3.0360	4.9338 2.3515 11.0081 3.2278	4.1188 2.0211 11.3945 3.0653	$\frac{6.6908}{3.6643}$ $\frac{14.6771}{4.5001}$	5.3581 2.7899 12.3232 3.5063	6.0666 3.2383 14.6781 4.2540	6.0646 3.0125 13.8446 3.8798	6.9550* 3.9911* 14.9509* 4.5747*

Table 2: Overall Performance (%). Bold ones indicate the best performances, while underlined ones indicate the best among baselines. * indicates a statistically significant level p-value < 0.05 comparing MMSR with the best baseline.

M - J - 1	Be	auty	Clo	thing	Sport		
Model	HR@5	MRR@5	HR@5	MRR@5	HR@5	MRR@5	
GCN	5.6348	3.163	1.2340	0.6465	2.3177	1.1424	
GraphSAGE	5.5773	3.1283	1.3801	0.8552	2.2496	1.3473	
GAT	5.7116	3.1941	1.4092	0.8332	2.3452	1.3825	
Graphormer	5.9267	3.3029	1.4573	0.9029	2.3069	1.3756	
RGAT	6.8157	3.9783	1.7352	1.0873	2.8609	1.7133	
<i>HGNN</i>	6.9701	4.1276	1.7721	1.1084	2.9682	1.7776	
HGAT	7.0671	4.2494	1.8448	1.1417	3.0458	1.8501	
HAN-GNN	7.1386	4.6244	2.0402	1.2642	3.3255	1.9916	

Table 3: Graph Aggregator Comparison.

Model	Be	auty	Clo	thing	Sport		
	HR@5	MRR@5	HR@5	MRR@5	HR@5	MRR@5	
HAN-GNN	7.1386	4.6244	2.0402	1.2642	3.3255	1.9916	
Synchronous	6.8912	4.4515	1.7857	1.0681	3.0924	1.7849	
NI(hohe)	6.8900	4.4616	1.9999	1.2357	3.0616	1.8792	
NI(heho)	6.8897	4.5528	1.3932	0.7655	3.0087	1.7051	
hohe	6.8971	4.4245	1.9575	1.2169	3.0565	1.8793	
heho	6.5406	4.3117	1.1495	0.6398	2.8871	1.6654	
ho	6.6702	4.1004	1.6012	0.9069	3.0306	1.7412	
he	6.9354	4.446	1.9957	1.2236	3.0047	1.8648	
w/o epo	6.9664	4.5653	2.0665	1.2581	3.1547	1.8968	
$w/o e^{ty}$	6.9390	4.5074	2.0370	1.2593	3.2112	1.9854	

Table 4: Ablation analysis, evaluated with (HR, MRR)@5. The relation ablation is based on a GCN aggregator.

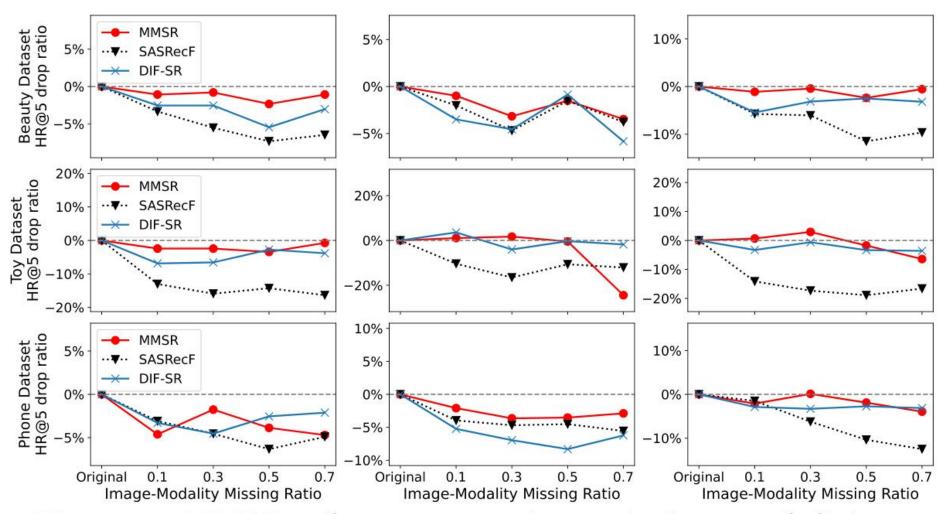


Figure 4: MMSR robustness against missing modalities.

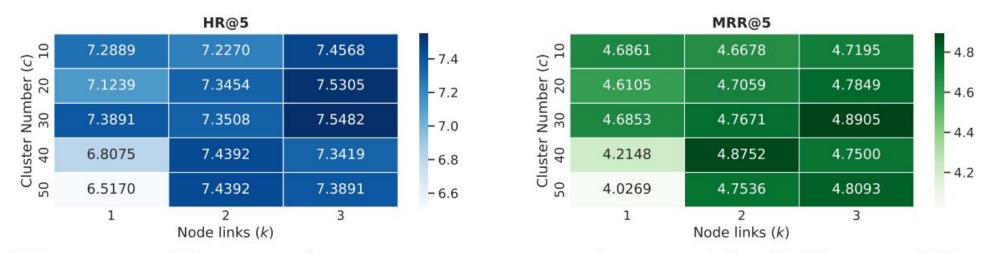


Figure 5: The performance comparison with different MS-Graph construction parameters on the Beauty dataset.

Thanks